Motherwell, W. D. S. \& Clegg, W. (1978). PLUTO. Program for Plotting Molecular and Crystal Structures. Univ. of Cambridge, England.
Nakatani, H., Hayashi, H. \& Hidaka, T. (1992). Jpn. J. Appl. Phys. 31, 1802-1806.

Acta Cryst. (1993). C49, 2002-2003

2,11-Dithia|3.3]metacyclophane-9-carboxylic Acid tert-Butyl Ester

Barbara Albert and Martin Jansen*
Institut für Anorganische Chemie, Universität Bonn, Gerhard-Domagk-Strasse 1, W-5300 Bonn 1, Germany

Ralf GÜther and Fritz Vögtle
Institut für Organische Chemie, Universität Bonn, Gerhard-Domagk-Strasse 1, W-5300 Bonn 1, Germany
(Received 4 January 1993; accepted 6 May 1993)

Abstract

X-ray structure determination of tert-butyl 3,11-dithiatricyclo[11.3.1.15,9]octadeca-1(17),5,7,9(18),13,-15-hexaene-17-carboxylate reveals the molecules adopting a syn conformation with the sulfurcontaining bridging chains in a boat-chair arrangement. The syn-orientated arene rings are tilted with respect to each other forming a dihedral angle of 22.9 (2) ${ }^{\circ}$.

Comment

The structure determination of the title compound was undertaken within the context of investigations on the synthesis, reactivity and conformation of intra-annular substituted cyclophanes (Vögtle, Grütze, Nätscher, Wieder, Weber \& Grün, 1975).

In the solid state, there are four separate molecules per unit cell, each of them adopting a syn conformation, as seen in the parent compound 2,11dithia[3.3]metacyclophane (Anker, Bushnell \& Mitchell, 1979).

A dihedral angle of $22.9(2)^{\circ}$ between the arene rings indicates a slightly stronger strain compared with the unsubstituted compound (dihedral angle 20.6°). The methylene C atoms attached to the rings are displaced from the arene-ring planes. The intramolecular S \cdots S distance of $6.37 \AA$ is shorter than
those of the unsubstituted compound ($6.97 \AA$). The other bond lengths and angles are comparable to those of the unsubstituted compound.

Fig. 1. ORTEP view (Johnson, 1965) of the title compound with thermal ellipsoids shown at the 50% probability level.

Experimental

Crystal data
$\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{O}_{2} \mathrm{~S}_{2}$
$M_{r}=372.54$
Monoclinic
$P 2_{1} / a$
$a=13.317$ (5) \AA
$b=7.624$ (1) \AA
$c=19.965$ (8) \AA
$\beta=104.15$ (2) ${ }^{\circ}$
$V=1965.4(8) \AA^{3}$
$Z=4$
$D_{x}=1.26 \mathrm{Mg} \mathrm{m}^{-3}$
Data collection
Enraf-Nonius CAD-4
diffractometer
ω scans
Absorption correction:
none
5782 measured reflections
2322 independent reflections
2026 observed reflections
[$\left.F_{\sigma}>3 \sigma\left(F_{o}\right)\right]$

Refinement

Refinement on F
Final $R=0.0558$
$w R=0.0510$
2026 reflections
229 parameters
$w=1 / \sigma^{2}(F)$
$(\Delta / \sigma)_{\max }=0.003$

Mo $K \alpha$ radiation
$\lambda=0.71069 \AA$
Cell parameters from 25 reflections
$\theta=15-18^{\circ}$
$\mu=0.237 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Plate
$0.3 \times 0.2 \times 0.2 \mathrm{~mm}$
Colourless
$R_{\text {int }}=0.0608$
$\theta_{\text {max }}=22^{\circ}$
$h=-14 \rightarrow 14$
$k=0 \rightarrow 8$
$l=-21 \rightarrow 21$
2 standard reflections frequency: 60 min intensity variation: none
$\Delta \rho_{\max }=0.266 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\min }=0.259 \mathrm{e}^{-3} \AA^{-3}$
Atomic scattering factors from International Tables for X-ray Crystallography (1974, Vol. IV)

Table 1. Fractional atomic coordinates and equivalent isotropic thermal parameters $\left(\AA^{2}\right)$

$U_{\text {eq }}=\frac{1}{3} \Sigma_{i} \Sigma_{j} U_{i j} a_{i}^{*} a_{j}^{*} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$.				
	x	y	z	$U_{\text {eq }}$
C1	0.6524 (4)	-0.4681 (7)	0.2318 (3)	0.060 (3)
S2	0.5794 (1)	-0.3438 (2)	0.1592 (1)	0.064 (1)
C3	0.6584 (4)	-0.1493 (7)	0.1610 (2)	0.055 (2)
C4	0.6761 (4)	-0.0487 (6)	0.2283 (2)	0.043 (2)
C5	0.7744 (4)	-0.0530 (7)	0.2716 (3)	0.053 (2)
C6	0.7925 (4)	0.0201 (7)	0.3370 (3)	0.052 (2)
C7	0.7127 (4)	0.0931 (6)	0.3594 (3)	0.046 (2)
C8	0.6126 (4)	0.1019 (6)	0.3177 (2)	0.039 (2)
C9	0.5952 (3)	0.0333 (6)	0.2503 (2)	0.038 (2)
C10	0.5283 (3)	0.1805 (6)	0.3462 (2)	0.044 (2)
S11	0.5085 (1)	0.0654 (2)	0.4219 (1)	0.049 (1)
C12	0.4671 (3)	-0.1552 (6)	0.3898 (2)	0.044 (2)
C13	0.5550 (3)	-0.2727 (6)	0.3811 (2)	0.038 (2)
C14	0.6308 (4)	-0.3319 (7)	0.4371 (3)	0.052 (2)
C15	0.7123 (4)	-0.4343 (7)	0.4261 (3)	0.060 (2)
C16	0.7187 (4)	-0.4761 (6)	0.3607 (3)	0.053 (2)
C17	0.6426 (4)	-0.4186 (6)	0.3042 (3)	0.043 (2)
C18	0.5594 (3)	-0.3207 (6)	0.3146 (2)	0.038 (2)
C19	0.4878 (4)	0.0446 (7)	0.2042 (2)	0.044 (2)
O20	0.4113 (3)	-0.0128 (5)	0.2173 (2)	0.058 (1)
021	0.4909 (2)	0.1316 (4)	0.1461 (2)	0.049 (1)
C22	0.3945 (4)	0.1717 (8)	0.0926 (2)	0.058 (2)
C23	0.4365 (4)	0.2628 (8)	0.0379 (2)	0.078 (3)
C24	0.3382 (4)	0.0036 (8)	0.0657 (3)	0.085 (3)
C25	0.3276 (4)	0.2938 (8)	0.1235 (3)	0.083 (3)

Table 2. Selected bond distances (\AA) and angles (${ }^{\circ}$)

C1-S2	$1.805(5)$	C19-O20	$1.196(7)$
S2-C3	$1.815(5)$	C19-O21	$1.345(6)$
C10-S11	$1.820(5)$	O21-C22	$1.487(5)$
S11-C12	$1.836(5)$	C22-C23	$1.513(8)$
C1-S2-C3	$102.5(2)$	C10-S11-C12	$104.2(2)$

The title compound was synthesized by reaction of 2,6 -bis(bromomethyl)benzoic acid tert-butyl ester and 1,3-bis(mercaptomethyl)benzene in benzene-ethanol ($1: 1$) with sodium hydroxide as base under high-dilution conditions (Vögtle, Grütze, Nätscher, Wieder, Weber \& Grün, 1975). Crystals were grown by recrystallization from acetone and were glued on a glass fibre.

The structure was solved by direct methods (Sheldrick, 1986) and refinement was by full-matrix least-squares techniques (Sheldrick, 1976). H atoms were included at calculated positions ($\mathrm{C}-\mathrm{H}=1.08 \AA$), riding on the carbon skeleton in the final stages of refinement with a common isotropic displacement parameter for the $\mathrm{CH}, \mathrm{CH}_{2}$ and CH_{3} groups. Distances and angles were calculated by PARST (Nardelli, 1983).

[^0]
References

Anker, W., Bushnell, G. W. \& Mitchell, R. H. (1979). Can. J. Chem. 57, 3080-3087.
Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
Nardelli, M. (1983). Comput. Chem. 7, 95-98.
Sheldrick, G. M. (1976). SHELX76. Program for Crystal Structure Determination. Univ. of Cambridge, England.
© 1993 International Union of Crystallography
Printed in Great Britain - all rights reserved

Sheldrick, G. M. (1986). SHELXS86. Program for the Solution of Crystal Structures. Univ. of Göttingen, Germany.
Vögtle, F., Grütze, J., Nätscher, R., Wieder, W., Weber, E. \& Grün, R. (1975). Chem. Ber. 108, 1694-1711.

Acta Cryst. (1993). C49, 2003-2005

Structure of (Z)-L-Pro-d- $(\boldsymbol{\alpha M e})$ Phe-OH

Giovanni Valle, Fernando Formaggio, Marco Crisma and Claudio Toniolo

Biopolymer Research Centre, CNR, Department of Organic Chemistry, University of Padova, 35131 Padova, Italy

Johan Kamphuis
DSM Research, Bio-organic Chemistry Section, 6160 MD, Geleen, The Netherlands
(Received 21 April 1992; accepted 4 May 1993)

Abstract

In this N-protected heterochiral dipeptide (N^{α} -benzyloxycarbonyl-L-prolyl- C^{α}-methyl-D-phenylalanine), the tertiary urethane moiety is cis. In addition, the L-Pro residue is semi-extended while the D -

 ($\alpha \mathrm{Me}$) Phe residue is fully extended.
Comment

In connection with our current investigation into analogues at position 3 of morphiceptin, a pentapeptide amide with extreme selectivity for the μ-opiate receptor, the X -ray diffraction analysis of the title compound (N^{α}-benzyloxycarbonyl-L-prolyl- C^{α} -methyl-D-phenylalanine) (1) was carried out to determine the structural preference of this conformationally constrained heterochiral dipeptide sequence. Details of the synthetic work will be published elsewhere (Formaggio, Crisma, Toniolo \& Kamphuis, 1993).

(1)

Acta Crystallographica Section C ISSN 0108-2701 © 1993

[^0]: Lists of structure factors, anisotropic thermal parameters, H -atom coordinates and bond lengths and angles have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 71309 (15 pp .). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England. [CIF reference: SH1046]

